Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells.

نویسندگان

  • Haigang Gu
  • Shan Ping Yu
  • Claire-Anne Gutekunst
  • Robert E Gross
  • Ling Wei
چکیده

Neurons in the adult mammalian CNS do not spontaneously regenerate axons after injury due to CNS myelin and other inhibitory factors. Previous studies have showed that inhibition of the Rho-ROCK pathway promotes axonal outgrowth in primary neurons or in spinal cord injury models. Furthermore, RhoA inhibitor C3 transferase has a potential effect to induce neural differentiation in primary cultured neurons and cell lines. As stem cells and stem cell-derived neural progenitor cells have emerged as a regenerative medicine for stroke, Parkinson's disease and other neurological disorders, strategies that can promote axonal outgrowth and neuronal differentiation appear to have promising benefits in the cell-based therapy. Currently, how changes in the Rho-ROCK pathway may affect the neurite outgrowth and neuronal differentiation of stem cells has been poorly understood. The present investigation examined the effects of RhoA inhibition on neurite outgrowth and neuronal differentiation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of the mouse. Our results show that inhibition of RhoA leads to neurite outgrowth of NSCs not only on normal culture substrate, poly-D-lysine (PDL), but also on myelin substrate. Moreover, inhibition of RhoA improves neuronal differentiation of NSCs and up-regulates biomarkers of neuronal gene expression. These results support that the Rho signaling pathway plays an important role in neurite development and neuronal differentiation of NSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mou...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells

Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of physiology, pathophysiology and pharmacology

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2013